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ABSTRACT

Users often navigate multiple platforms online, each char-
acterized by its own set of scarce data. Recommender sys-
tems face a significant challenge in such fragmented envi-
ronments. This paper proposes a novel approach to en-
hance recommendation systems by leveraging connections
across distinct yet conceptually similar datasets from multi-
ple platforms. We introduce a unique scenario of dual-target
overlapping-free cross-platform recommendation, presenting
a bridging mechanism to mutually improve across platforms
and learn latent user preferences. Our approach addresses
the data sparsity prevalent in each platform and enhances
recommendation quality by harnessing redundant, rich, and
similar domain data. Experiments validate the effectiveness
of our method, demonstrating substantial improvements in
recommendation quality.

1. INTRODUCTION
In the ever-expanding realm of online platforms and social
networks, users engage across various channels, each pre-
senting a distinct ecosystem. A critical challenge emerges
from this fragmentation, where (i) multiple platforms offer
the same products, (ii) users are active across various plat-
forms, and (iii) data tends to be scarce, with some users
or items receiving limited and insufficient ratings for effec-
tive learning. This leads to a fundamental question: Could
we leverage the data across distinct yet conceptually simi-
lar platforms to enhance recommendation systems for all of
them?

Cross-domain recommendation explores strategies to bridge
the gap between different ecosystems. Some approaches
adopt transfer learning-like strategies, while others focus on
dual-target recommendations, addressing common users or
items shared between domains. Some address the scenario
where there are common users who interact in both domains,
while others try to resolve the more general non-overlapping
setting. Some make use of side information from user demo-
graphics or reviews, item metadata, and description; while
others rely entirely on user-item interactions only. These
categorical criteria split cross-domain recommendations into
various settings (elaborated in Section 2).

In this paper, we address the specific challenge of cross-
domain recommendation with no overlapping users, no over-
lapping items between the two platforms, and no side in-
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Figure 1: Four scenarios of overlapping user and item.

formation available (NO3). Our proposed methodology es-
tablishes a bridge for learning across two related domains
in recommendation systems, seeking to improve the accu-
racy and relevance of recommendations in scenarios where
data sparsity poses a considerable hurdle. This approach
is particularly crucial in instances where users interact on
different platforms or social networks that share similari-
ties, creating an opportunity to capitalize on the available
data. As we delve into the details of our approach, it be-
comes evident that our methodology not only fills a critical
gap in the existing literature but also lays the groundwork
for more effective cross-domain recommendation systems in
diverse online landscapes.

To this end, this paper makes several contributions. First,
we introduce a novel problem setting tailored to address the
challenge of scarce data in item-rich platforms, character-
ized by our unique setting (NO3-CDR) with no overlapping
users, no overlapping items, and no side information. Sec-
ond, to tackle the challenges, we propose two hard and soft
user-matching learning algorithms, encapsulated in a bridge
for learning across related domains in recommendation sys-
tems. Third, through empirical evidence from experiments,
we demonstrate improvements in recommendation quality,
offering a new perspective on cross-domain recommendation
systems and alleviating privacy concerns by reducing the
reliance on user identities. Our approach also leverages re-
dundant data in similar domains to overcome scarce data
hurdles in item-rich recommendation platforms.

2. PROBLEM FORMULATION
Cross-Domain Recommendation (CDR) in General.
The original CDR is useful when data from one domain
(known as the source domain), such as user-item interac-



tions, is utilized to improve the recommendation process in
a different but related domain (referred to as the target do-
main). The primary goal of CDR is to address challenges
like data sparsity and the cold-start problem in the target
domain by exploiting knowledge from the source domain.

Single-Target vs. Dual-Target Approaches. Prior
research in CDR systems has explored methodologies aim-
ing to transfer knowledge between distinct recommendation
domains. Early work focuses on single-target approaches
which typically entail exploiting redundant information from
a source domain to a less abundant target domain. In these
scenarios, the rich user or item information acquired from
the source domain assists the learning process for the sparser
target task. Techniques such as domain adaptation and
transfer learning have been employed to improve recommen-
dation performance specifically towards target domains.

Recently, there has been a growing interest in dual-target
approaches, focusing on enhancing user and item recommen-
dations across both domains. These methods seek to elevate
recommendations by pinpointing and leveraging the com-
mon ground between user preferences and item attributes,
thereby catering to the diverse interests of users across var-
ious domains.

Overlapping vs. Non-overlapping Data. Based on the
overlap of users and items, cross-domain recommendations
can be categorized into four scenarios as illustrated in Fig-
ure 1:

• No overlap: U1 ∩ U2 = ∅ and I1 ∩ I2 = ∅. There is
no overlap between users and items.

• User overlap: U1 ∩U2 ̸= ∅. There are shared users in
both domains.

• Item overlap: I1 ∩ I2 ̸= ∅. There are shared items in
both domains.

• User and item overlap: U1 ∩U2 ̸= ∅ and I1 ∩I2 ̸= ∅.
There are overlaps between both users and items.

CDR with overlapped users/items seeks to capitalize on
cross-domain information to enrich recommendations within
the focal domain. Traditionally, such approaches presume
users engaging across both domains, aiming to suggest source
items to target users or mitigate cold-start issues for users
new to the target domain. Yet, the constraint of overlapped
users lacks practicality in the real world, considering that
real user identities are not widely available.

Due to the limitations of assuming overlapped entities across
domains, previous studies address the more general scenario
of non-overlapping CDR, where they can leverage auxiliary
information such as demographics and textual data across
domains.

However, in scenarios where additional side information is
unavailable or disregarded, the recommendation task relies
solely on the historical user-item interactions. This situa-
tion poses challenges in bridging the gap between the two
domains.

In this paper, we address the novel setting of dual-target,
non-overlapping, cross-domain recommendation, where aux-
iliary information is unavailable. Our objective is to bridge
the gap in user preferences between the two domains by
aligning the underlying shared preferences of users across
domains, distinguishing our novel problem setting from pre-
vious studies.

3. RELATED WORK
Cross-Domain Recommendation. CDR encompasses
various problem settings.

Single-Target, Dual-Target, and Multi-Target. Foundational
formulation of single-target setting [2; 3; 5] aims to mitigate
data sparsity by utilizing redundant data or information
from other domains to enhance the original domain. For
instance, CBT [17] generates a codebook matrix to extract
cluster-level ratings from an auxiliary domain to support
the target domain. TALMUD [29] expands on this by in-
corporating multiple source domains with varying relevance
rates. The research then extends to the multi-target CDR [6;
22; 30]. CLFM [6] adopts a multi-target approach, divid-
ing the cluster-level codebook into common and domain-
specific sections. RMGM [18] integrates multiple sparse do-
mains sharing common latent cluster-level patterns into a
generative model. Recently, dual-target CDR [35; 36] have
gained more attention, aiming to improve recommendation
quality across both domains. DTCDR [35] first formulates
dual-target setting by sharing user knowledge across do-
mains. GA-DTCDR [36] enhances this framework using
graph and attention mechanisms to learn better represen-
tations of overlapping users.

User Overlapping. Full user overlap represents an extreme
case where the same users exist across multiple domains [2;
12; 26], treating each domain as a vertical partition of the
rating matrix. Techniques such as tri-factorization [12] and
graph convolutional networks [7] are employed to align user
preferences across domains. Conversely, [3; 6; 34] focus
on the problem of non-overlapping users, leveraging user
tags [3] and item features [31] as auxiliary information. Fur-
ther research explores the concept of partial user overlap [28;
30; 37] using methods such as collective matrix factoriza-
tion [30] and representation combination [35].

Using Side Information. Auxiliary knowledge, such as user
tags [3; 34] and textual descriptions [15; 31], are also utilized
to enhance recommendations.

Multi-Task Recommendation (MTRec). CDR can be
viewed as a specific instance of MTRec, where similar or re-
lated tasks are learned concurrently across different domain
datasets. Previous research in MTRec can be classified into
three types: (i) parallel [8; 32], (ii) cascaded [33; 27], and
(iii) auxiliary [10; 19].

In parallel MTRec, two or more recommendation tasks are
optimized concurrently using a weighted sum of their losses.
E.g., RnR [8] combines ranking and rating prediction tasks
for personalized video recommendations, while MTER [32]
integrates explanation generation alongside recommendation.

Cascaded multi-task recommendation refers to a sequential
chain of tasks that must be performed in a strict order,
modeling user behavior stages. An example in this domain
is ESMM [27], which addresses sparsity and sample selec-
tion bias through an “impression → click → conversion”
sequence.

In the auxiliary task relation, one task is designated as the
main task, with other tasks serving as auxiliary tasks to en-
hance the main task’s performance. This approach is similar
to single-target cross-domain recommendation. MetaBal-
ance [10] aims to reduce the gradient magnitude of aux-
iliary tasks to prioritize the target task objective, while
MTRec [19] incorporates link prediction to support the pri-
mary recommendation task.
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Figure 2: HNO3-CDR step-by-step workflow. Users, items,
and ratings go through the embedding layer and recommen-
dation model fθ. Here, a generic recommender loss ℓ is
computed by model prediction and target y. Subsequently,
based on the learned user representation, users from the two
domains are mapped and substituted into new data D. This
new dataset is passed through a new recommendation model
as an independent learning task.

4. METHODOLOGY
In the context of two distinct yet related tasks, D1 ∈ R|U1|×|I1|

and D2 ∈ R|U2|×|I2|, our objective is to develop a recom-
mender model f parameterized by θ, denoted as fθ, capable
of capturing user preferences while enhancing recommenda-
tion performance for both tasks. Notably, we operate under
the assumption that there is no predefined relationship be-
tween the sets of users (U1,U2) and items (I1, I2). Our
focus is on the generalized scenario where user identities re-
main anonymous and cannot be directly mapped, and no
additional item-related information, such as descriptions or
reviews, is available.

Dual-target CDR. The dual-target framework is designed
to optimize recommendation accuracy across domains. We
aim to learn a unified model fθ, that performs effectively in
both domains:

θ∗ = argmin
θ

(
ℓ(D1 | θ) + ℓ(D2 | θ)

)
(1)

Here, ℓ represents a general model-agnostic loss function,
such as Root Mean Squared Error (RMSE) for Matrix Fac-
torization or Binary Cross-Entropy (BCE) for Neural Col-
laborative Filtering (NCF).

Optimizing vanilla dual-target CDR is equivalent to a si-
multaneous multi-task learning objective through a shared
objective:

θ∗ = argmin
θ

ℓ(D1,D2 | θ) (2)

In this scenario, the set of users, denoted as U , is the union
of two distinct individual user sets, i.e., U = U1 ∪ U2, with
|U| = |U1|+ |U2|. Similarly, the set of items, denoted as I,
is the union of individual item sets, i.e., I = I1 ∪ I2, with
|I| = |I1|+ |I2|.

4.1 HNO3-CDR: User Hard-Matching for Cross-
Domain Recommendation

In the first attempt to bridge the connection of users in
two domains, we find the hard-matching of every user from
one domain to one corresponding user in the other domain,
maximizing the similarities of matched users. Hungarian
Algorithm [14] is a widely employed method to solve as-

Algorithm 1: HNO3-CDR Learning Algorithm

Input : D1,D2,U = U1 ∪ U2, I = I1 ∪ I2

θ∗ = argminθ ℓ(D1 ∪ D2 | θ) ▷ Derive representations
row ind, col ind = Hungarian(θ∗U1 , θ

∗
U2) ▷ Users

matching
Û = map(U , row ind, col ind) ▷ Mapping user indices

D ∈ R|Û|×|I| ▷ New dataset from substituted users
Θ∗ = argminθ ℓ(D | Θ) ▷ Learn until convergence
Output: Θ∗

signment problems. This classic algorithm minimizes the
total cost of assignments in bipartite graphs, offering an ef-
ficient solution for various contexts. One user from the first
domain can be assigned to at most one user in the other
domain and vice versa. This results in a hard one-to-one
user-matching across the two domains. Algorithm 1 and
Figure 2 illustrate the step-by-step hard-matching learning
algorithm for CDR. First, we obtain the optimal user repre-
sentations from both domains in a multi-task learning set-
ting, where the domain-specific datasets are combined as
D1∪D2. The optimal parameters are learned by optimizing
θ∗ = argminθ ℓ(D1∪D2 | θ). Next, we produce the mapping
of the two user sets using the Hungarian algorithm. The re-
sulting matching is then used to substitute users from one
domain with their counterparts in the other. For example,
if user u1

i ∈ U1 is matched with user u2
j ∈ U2, we replace

u2
j with u1

i . This creates a full overlapping user scenario,
where the matched users are merged into a single unified
set, denoted as Û . Finally, using the substituted user set

Û , we construct a new dataset D ∈ R|Û|×|I| and optimize a
new model gΘ accordingly.

4.2 SNO3-CDR: Soft-Matching End-To-End
Cross-Domain Recommendation

HNO3-CDR faces several challenges. Firstly, it adopts a
step-by-step learning process, where each step is executed
discretely without a seamless flow, posing difficulties in op-
timization. Secondly, the mapping process occurs after the
initial learning phase, creating uncertainty regarding the
meaningfulness of the connection between the two user sets.
Once this mapping is done, adjustments to enhance its suit-
ability are not possible. To address these issues, we propose
a solution that involves user soft-matching and functions
as an end-to-end learning model. This model streamlines
the learning process into a continuous flow and prioritizes
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Figure 3: SNO3-CDR workflow. Users, items, and ratings
go through the normal embedding layer and recommenda-
tion model fθ to derive generic recommender loss ℓ between
model prediction and target y. Sinkhorn distance ℓS be-
tween two user sets acts as a bridge of users between the
two domains and is combined with generic loss.



Algorithm 2: SNO3-CDR Learning Algorithm

Input : D = D1 ∪ D2,U = U1 ∪ U2, I = I1 ∪ I2,
learning rate α

for iteration = 1, . . . , w do
θ = θ − α×∇ℓ(D | θ) ▷ w−step warmup iterations

θ∗ = argminθ ℓ(D | θ) + γℓS(θU1 , θU2)
▷ Optimize until convergence

Output: θ∗

the optimization of general recommendations alongside the
meaningful mapping of users. The end-to-end architecture
ensures a continuous and adaptable mapping process, allow-
ing for continuous enhancement of user representation with
a focus on fostering meaningful connections throughout the
model optimization process.

4.2.1 Sinkhorn distance
Optimal transport algorithms try to minimize transporta-
tion cost from source/producer to target/consumer given the
producer’ capacities and consumers’ needs:

d = min
∑
i,j

Pi,jCi,j

Subject to: Pi,j ≥ 0 for all i, j∑
j

Pi,j = ri for all i

∑
i

Pi,j = cj for all j

where Pi,j is the amount to transport from Pi to Cj , Ci,j is
cost to transport from Pi to Cj , ri is capacity of Pi, and cj
is Cj ’s need.

Sinkhorn algorithm [1; 4] can be applied to transform the op-
timal transportation problem into the mapping of two “point
clouds”, where we transport “mass” from one set of points to
another. [4] rewrites the original optimization formulation
into Lagrange form:

dS(P,C) =
∑
i,j

Pi,jCi,j −
1

λ
h(P ) +

∑
i

mi

(∑
j

Pi,j − ri

)

+
∑
j

nj

(∑
i

Pi,j − cj

)
(3)

with mi and nj are Lagrange multipliers.

The derivative w.r.t. P can be easily derived by:

∂dS
∂Pi,j

= Ci,j +
1

λ
+

1

λ
logPi,j +mi + nj

This differentiable Sinkhorn distance can be seamlessly in-
corporated into any general objective of recommender mod-
els.

4.2.2 Mediate Latent Preferences by Sinkhorn Dis-
tance.

We constrain users from two domains to be close to each
other without binding them tightly one-to-one. We define
the Sinkhorn distance between two sets (i.e., point clouds)
of user representations, U1 and U2, as:

ℓS(θU1 , θU2) = dS(U1,U2) + dS(U2,U1) (4)

Here, dS(U1,U2) denotes the standard uni-directional Sinkhorn
distance from point cloud U1 to U2, calculated using an ar-
bitrary ground distance function (e.g., Euclidean, cosine) as
the transportation cost between points in U1 and U2. This
results in a symmetric, bi-directional distance measure. ℓS
is differentiable with respect to both sets of representations,
θU1 and θU2 , making it suitable for gradient-based optimiza-
tion within a recommender system framework. Alterna-
tively, we could employ a standard uni-directional Sinkhorn
distance, using either dS(U1,U2) or dS(U2,U1). Section 5
will show the impact of bi-directional and uni-directional
formulations.

We incorporate ℓS into the training objective to mediate the
latent preferences of users across domains. This encourages
the user representations to be similar while retaining the
capacity to capture domain-specific preferences. Conceptu-
ally, this can be formulated as a constrained optimization
problem:

θ∗ = argmin
θ

ℓ(D1,D2 | θ)

Subject to: ℓS(θU1 , θU2) ≤ α2

where ℓ(D1,D2 | θ) is the primary recommendation loss
function for data from domains D1 and D2, and α2 is a
positive tolerance threshold.

By rewriting the constraint as ℓS(θU1 , θU2)−α2 ≤ 0, the fi-
nal objective function for our end-to-end learning framework
using the Lagrange multiplier is derived as:

θ∗ = argmin
θ

ℓ(D1,D2 | θ) + γ
(
ℓS(θU1 , θU2)− α2)

∝ argmin
θ

ℓ(D1,D2 | θ) + γℓS(θU1 , θU2) (5)

This augmented objective effectively balances the optimiza-
tion of the primary recommendation task ℓ with the contin-
uous and flexible mapping process ℓS , therefore promoting
the transfer and adaptation of user preferences across do-
mains by aligning their representations.

Alternatively, this augmented objective can be interpreted
within a multi-task learning framework, where minimizing
the transportation cost ℓs serves as an auxiliary task that
supports and improves the performance of the primary rec-
ommendation task.

The overall learning process, illustrated in Algorithm 2 and
Figure 3, involves an initial warm-up phase to learn mean-
ingful user representations, followed by concurrently opti-
mizing the augmented objective, which incorporates both
the recommendation loss and the transportation cost.

5. EXPERIMENTS
Datasets. For experiments, the first three pairs of datasets
are from Amazon1: Books - Kindle Store; Electronics - Cell
Phones and Accessories; and CDs and Vinyl - Digital Music,
chosen based on the assumption that users’ preferences are
likely shared between the two domains. For example, users
who enjoy reading books may also be interested in similar
Kindle e-books. To further diversify our analysis, we con-
struct a fourth dataset from two sources: Amazon Books -
Book Crossing2, where the two share the same category of
items but from different user sets and sources.

1https://nijianmo.github.io/amazon/index.html
2https://grouplens.org/datasets/book-crossing/



Table 1: Datasets stats for four scenarios

Dataset Stats
Generic Superset Subset Common

D1 D2 D1 D2 D1 D2 D1 D2

Books #ratings 8,898,041 982,619 8,898,041 967,196 1,319,803 982,619 1,319,803 967,196
— #users 367,982 61,934 367,982 61,236 61,236 61,934 61,236 61,236

Kindle #items 603,668 68,223 603,668 68,079 256,019 68,223 256,019 68,079

Electronics #ratings 6,387,916 1,109,521 6,387,916 648,026 1,230,678 1,109,521 1,230,678 648,026
— #users 694,953 154,813 694,953 81,381 81,381 154,813 81,381 81,381

Cell Phones #items 157,693 47,607 157,693 46,996 134,621 47,607 134,621 46,996

CDs #ratings 1,377,008 123,518 1,377,008 42,872 181,705 123,518 181,705 42,872
— #users 107,546 12,381 107,546 3,720 3,720 12,381 3,720 3,720

Music #items 71,943 9,906 71,943 9,113 49,898 9,906 49,898 9,113

AMZ Books #ratings 223,302 197,140 - - - - - -
— #users 3,353 2,578 - - - - - -

Book Crossing #items 5,752 4,313 - - - - - -

Four Scenarios. For comprehensive analysis, we explore
four distinct scenarios, based on the overlap of two user sets
U1 and U2, from the generic case with no constraint of users,
to the extreme scenario where only users overlap between
two domains are allowed, and the two middle ground sce-
narios.

• Scenario 1 (Generic): Any U1 and U2

• Scenario 2 (Superset): U1 ⊃ U2

• Scenario 3 (Subset): U1 ⊂ U2

• Scenario 4 (Common): U1 = U2

In all four cases, regardless of overlapping, user identities
are masked so that the model treats the same user in two
domains as two different users. Table 1 summarizes the
respective statistics of the datasets under each of the four
experimental scenarios.

Rating and Ranking Tasks. For evaluation, we employ
two recommendation tasks: rating prediction and ranking
prediction. We apply our model-agnostic proposed methods
to two representative backbone models: Matrix Factoriza-
tion (MF [13]) and Neural Collaborative Filtering (NCF [9])
and evaluate their performance. We use Mean Absolute Er-
ror (MAE) and Root Mean Squared Error (RMSE) for rat-
ing prediction, and Normalized Discounted Cumulative Gain
(NDCG) and Recall with k = 50 for ranking prediction.

Comparative Methods. Due to its novel setting, there is
no direct baseline for NO3-CDR. Previous dual-target cross-
domain recommendation studies either (i) utilize shared pa-
rameters from the same users or items, which assumes user
or item overlap–an assumption that does not hold in our
setting–or (ii) leverage other data modalities as side infor-
mation, which are also unavailable in our case. Therefore,
we consider the comparative methods below:

• Base models: We use MF [13] and NCF [9] as backbone
models for rating and ranking tasks, respectively. We
combine data from two domains and train with one
single model, with objective function in Equation 2.

• SinkhornCF [20]: Infuses Sinkhorn divergence of items
into the learning objective. It can be applied to MF
(i.e., SinkhornMF) and NCF (i.e., SinkhornNCF).

• NMF [16]: As recent studies [23; 24] suggest Non-
negative Matrix Factorization (NMF) to be superior

Table 2: The effects of aggregating user identities across
domains for Amazon CDs - Digital Music dataset. Better
results are in bold.

Training
CDs Digital Music

RMSE(↓) MAE(↓) RMSE(↓) MAE(↓)
Separately 0.6612 0.6103 0.5959 0.5729

Together 0.6299 0.5775 0.5848 0.5621

to the original MF, NMF is included as a baseline for
rating prediction.

• VAECF [21] and its variants are widely used due to
their non-linear probabilistic generative modeling. We
include VAECF as a baseline for the ranking prediction
task.

We adopt NMF and VAECF, which are considered superior
to the backbone models MF and NCF, to evaluate whether
the proposed methods can enhance the backbone models
sufficiently to outperform these two baselines.

Hyper-parameter Tuning. Each dataset is partitioned
into training, validation, and test sets using a chronologi-
cal proportional split as described in prior works [11; 25],
with a ratio of 60/20/20 for training, validation, and test
sets. All methods are trained on the training set, tuned for
optimal performance and model selection based on the val-
idation set, and the best models are evaluated on the test
set. We perform random search for hyper-parameter tun-
ing, with the search space for some key hyper-parameters
as follows: learning rate ∈ [0.001, 0.1], embedding size ∈
{64, 100, 128, 256}, and control parameter γ ∈ [0.1, 1.0]. The
number of warm-up iterations for SNO3 and HNO3-CDR is
set to w = 5.

5.1 Research Questions (RQ) and Discussions
RQ1: The effects of using user identities across do-
mains.
We first investigate the potential benefits of having user
identities across domains. We carry out an experiment to
compare the performance of training the model separately
and together on the CDs - Music dataset. We first filter only
users who have presented in both domains, then train the
MF model in two different settings: (i) separately, where we
train the model on each domain independently, and (ii) to-
gether, where we combine user-item interactions from both
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Figure 4: Rating prediction performances in four scenarios. For RMSE and MAE, the lower values (↓) indicate better results.

domains and train on the whole data.

Table 2 contrasts training the model separately versus jointly
on the CDs - Digital dataset. The results show that joint
training reduces both RMSE and MAE for CDs and Music,
demonstrating improved performance over separate train-
ing. It aligns with the intuition that shared user identities
can improve predictions across domains. Therefore, effective
mechanisms for aligning user identities can be leveraged to
enhance recommendations.

RQ2: How do the two variants NO3-CDR perform?
Figures 4 and 5 present results across three Amazon datasets
for two prediction tasks under four different scenarios. Com-
paring against benchmark baselines, we observe distinct be-
haviors in each task. For rating prediction (Figure 4), the
MF-HNO3 and MF-SNO3 variants outperform SinkhornMF
and NMF, both of which surpass traditional MF. Notably,
MF-HNO3 consistently achieves the best performance, yield-
ing significantly lower RMSE and MAE, followed by MF-
SNO3 as the second-best performer. In contrast, for rank-
ing prediction (Figure 5), the Hungarian-based NCF-HNO3
fails to surpass the NCF baseline, while SinkhornNCF and

VAECF have superior performance over vanilla NCF. Among
the NO3 variants, NCF-SNO3 consistently enhances the NCF
backbone, achieving the best overall performance. It sur-
passes the two strongest NCF-based baselines in most cases,
particularly in terms of NDCG and Recall. The only excep-
tions are NDCG on the Books domain (Figure 5a, top-left)
and both NDCG and Recall on the Electronics and Cell
Phones domains (Figure 5c, middle row), where Sinkhorn-
NCF marginally outperforms NCF-SNO3.

The choice between HNO3 and SNO3 depends on the spe-
cific recommendation task: HNO3 is more effective for rat-
ing prediction, while SNO3 excels in ranking tasks. This is
likely due to the different ways the two backbone models
generate item scores. In MF, ratings are directly predicted
from user-item embeddings, which aligns well with the one-
to-one matching of the HNO3 variant. In contrast, NCF
generates user-item scores indirectly through multiple feed-
forward neural network layers, which benefits more from the
flexible matching SNO3 for ranking tasks.

RQ3: The scenarios involving two different data
sources.
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(b) Superset scenario.
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Figure 5: Ranking prediction performances in four scenarios. For NDCG and Recall, higher values (↑) indicate better results.

Table 4 presents the results of experiments conducted on
datasets from two different sources: Amazon Books and
Book Crossing. For the rating task, MF-HNO3 delivers the
best performance in terms of RMSE and MAE, except for
RMSE on Amazon Books, where it ranks second to NMF.
SNO3-CDR closely follows behind. In the item ranking task,
NCF-SNO3 outperforms the others in terms of NDCG and
Recall, while NCF-HNO3 does not improve upon the NCF
baseline. These findings align with previous results from the
three Amazon dataset pairs. This supports the idea that ag-
gregating data from multiple fragmented platforms can en-
hance performance. While more data does not always guar-
antee better results, effectively guiding the learning process
allows the model to leverage richer information. The results
also demonstrate the robustness of the proposed methods in
improving recommendations across diverse data sources.

RQ4: Uni-directional versus bi-directional SNO3.
SNO3-CDR offers the flexibility to transport bi-directionally
between two “point clouds” U1 and U2. To see whether uni-
directional or bi-directional yields superior recommendation,
and whether there is an optimal assignment to each domain
as source or target, we analyze three cases: (i) bi-directional
transportation (i.e., no designated “target”), (ii) U1 as “tar-
get” point cloud, and (iii) U2 as “target” nodes.

Table 3 compares bi-directional and uni-directional MF-SNO3
and NCF-SNO3 across all four scenarios of the CDs-Music
dataset. In all cases, the best uni-directional method outper-
forms the bi-directional method, improving results in both
domains. No domain consistently outperforms the other. In
three out of four scenarios, selecting one target domain en-
hances both rating and ranking predictions. The exception
is the Common scenario: for ratings, selecting D1 as the tar-
get improves results, while for ranking, choosing D2 yields
better performance.

In pursuit of optimal results for the one-sided SNO3, we
propose an automatic method to identify the better “tar-
get” domain by selecting the domain with higher user rep-
resentation variance. After warm-up epochs, we calculate
and compare variances, choosing the domain with higher
variance as the target. This Auto method achieves the best
SNO3 results in most cases (see Table 3), except in the Su-
perset scenario, where Auto performs better in D1 but not in
D2. This discrepancy arises due to the extreme imbalance in
dataset sizes (Table 1): D1 has over 1 million ratings, while
D2 has only 42,872 ratings.

RQ5: Should we prioritize matching the same user
across domains to enhance recommendation perfor-
mance?



Table 3: Results of different “target” domain on CDs - Music’s four scenarios. Best results are in bold.

(a) Common scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)
None 0.7026 0.6611 0.6854 0.6683 0.0054 0.0134 0.0092 0.0274
D1 0.6942 0.6523 0.6808 0.6637 0.0065 0.0164 0.0082 0.0237
D2 0.7129 0.6716 0.6892 0.6719 0.0069 0.0169 0.0121 0.0360
Auto 0.6942 0.6523 0.6808 0.6637 0.0069 0.0169 0.0121 0.0360

(b) Superset scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)
None 0.6103 0.5900 0.5922 0.5790 0.0045 0.0134 0.0124 0.0386
D1 0.6041 0.5836 0.5864 0.5731 0.0046 0.0146 0.0135 0.0395
D2 0.6161 0.5958 0.5969 0.5837 0.0028 0.0085 0.0135 0.0414
Auto 0.6041 0.5836 0.5864 0.5731 0.0046 0.0146 0.0135 0.0395

(c) Subset scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)
None 0.6726 0.6277 0.5922 0.5790 0.0035 0.0082 0.0082 0.0234
D1 0.6650 0.6200 0.5864 0.5731 0.0036 0.0089 0.0095 0.0237
D2 0.6824 0.6373 0.5969 0.5837 0.0023 0.0071 0.0048 0.0217
Auto 0.6650 0.6200 0.5864 0.5731 0.0036 0.0089 0.0095 0.0237

(d) Generic scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)
None 0.7757 0.7349 0.6138 0.6014 0.0035 0.0107 0.0047 0.0130
D1 0.7806 0.7394 0.6192 0.6068 0.0025 0.0085 0.0044 0.0110
D2 0.7709 0.7301 0.6074 0.5948 0.0036 0.0112 0.0055 0.0163
Auto 0.7709 0.7301 0.6074 0.5948 0.0036 0.0112 0.0055 0.0163

Table 4: Results for Amazon Books - Book Crossing dataset.
Note that in Amazon Books, the rating scale is from 1 to 5,
while for Book Crossing is from 1 to 10. Best results are in
bold, while second-best results are in italic.

(a) Rating Prediction

Model
AMZ Books Book Crossing

RMSE MAE RMSE MAE

MF 0.9080 0.8429 3.3754 3.1218
SinkhornMF 0.8878 0.8289 3.3116 3.1498

NMF 0.8853 0.8226 3.2920 3.0703

MF-HNO3 0.8864 0.8193 3.2564 3.0700
MF-SNO3 0.8865 0.8195 3.2771 3.0701

(b) Ranking Prediction

Model
AMZ Books Book Crossing

NDCG (%) Recall (%) NDCG (%) Recall (%)

NCF 0.1075 0.3494 0.1324 0.3268
SinkhornNCF 0.0938 0.2784 0.1667 0.3582

VAECF 0.0786 0.2310 0.1308 0.3453

NCF-HNO3 0.0890 0.2069 0.1168 0.2954
NCF-SNO3 0.1198 0.3709 0.1709 0.3838

Users may portray different preferences across platforms,
such as purchasing classical music on CDs and Vinyl and
modern trending songs on Digital Music. Our goal is to
enhance recommendations on both platforms rather than
focusing solely on matching users across domains, as we as-
sume no overlap in users.

However, though not used in the learning as presumed non-
existent, the availability of user identity information allows
us to investigate whether the algorithms match users across

Table 5: Case study in CDs-Music dataset

User in CDs: A117WAVHO1WAIE User in Music: A8QZWK9SUH66P

Items rated Items categories Items rated Items categories

The Commodores R&B, Funk, Pop Doo-Wops & Hooligans Pop, R&B
Earth Wind & Fire R&B, Funk, Soul Waking Up Pop, Rock
Song of Solomon Rock, Pop X Pop, R&B
Carpenters Gold Pop Here’s To The Good Times Pop, Rock

Piano Prophet Jazz, R&B
The Fault In Our Stars Rock
The Hunting Party Rock

User in CDs: A28DBLK5JB17P3 User in Music: A167KI3P7XN1AM

Items rated Items categories Items rated Items categories

Led Zeppelin: Box Rock, Metal
Led Zeppelin I Rock, Metal Made In The A.M. Pop, Rock
Led Zeppelin II Rock, Metal

Houses of the Holy Rock, Metal
Somewhere In Time LP Rock, Metal

At Your Service Pop, Rock

User in CDs: A28DBLK5JB17P3 User in Music: A1VFOUHOYX29YP

Items rated Items categories Items rated Items categories

Led Zeppelin: Box Rock, Metal Light Me Up Rock, Metal
Led Zeppelin I Rock, Metal Hit Me Like A Man Rock, Metal
Led Zeppelin II Rock, Metal Bad Magic - Motörhead Rock, Metal

Houses of the Holy Rock, Metal Dystopia - Megadeth Rock, Metal
At Your Service Pop, Rock XI Metal - Church Rock, Metal

domains correctly. We investigate the user mapping ac-
curacy in CDs - Music dataset’s Common scenario, using
MF-HNO3, since it performs best in rating prediction; and
NCF-SNO3 for ranking. Surprisingly, out of 3,720 users
across both domains, MF-HNO3 accurately maps only 1 to
3 users on different runs. While NCF-SNO3 does not output
user mapping, we derive the mapping based on the closest
Sinkhorn distances of final user representations, and the re-
sult is 0 to 3 correct user pairs.

HNO3 is a step-by-step learning process and mapping qual-



ity solely relies on user representation derived from the ini-
tial learning model. For SNO3, the control variable γ in
Equation 5 can be adjusted to balance recommendation and
transportation objectives. However, as γ increases (favor-
ing user mapping), recommendation performance gradually
decreases. The Sinkhorn distance in SNO3 acts as a flex-
ible bridge between domains, where matching users is not
prioritized to achieve the best recommendation quality.

5.2 Case Study: Example Matched User Pairs
Table 5 presents three user pairs from the CDs domain along
with their corresponding matches from the Music domain.

In the first pair, both users show similar preferences for a
mix of R&B, Pop, and Rock. User A117WAVHO1WAIE has
a diverse taste, enjoying artists like The Commodores, Earth
Wind & Fire, and The Carpenters, ranging from classic
R&B and funk to pop. Interestingly, her match in the mu-
sic domain, user A8QZWK9SUH66P, also appreciates Pop
and R&B, with selections like Bruno Mars’ “Doo-Wops &
Hooligans” and Florida Georgia Line’s “Here’s To The Good
Times”, showcasing a similar inclination to pop and rock.

The second pair, user A28DBLK5JB17P3 in CDs and user
A167KI3P7XN1AM in Music, exhibited more distinct com-
mon preferences. They are deeply rooted in rock and metal,
especially classic metal rock. In the third pair, user from the
second pair, A28DBLK5JB17P3, is also the best match for
the user in Music, A1VFOUHOYX29YP, who also roots for
rock albums, such as The Pretty Reckless’ “Light Me Up”
and “Hit Me Like A Man”.

NCF-SNO3 effectively captures the similarities among intri-
cate user preferences. The consolidation of these identified
parallels among matched user pairs serves to reinforce the
notion of preference bridging, rather than prioritizing the
enhancement of correct matching accuracy. While the op-
timal match for a user across domains may not fully align
with their unique preferences, they may exhibit a greater
degree of similarity in their preferences compared to their
own preferences in different domains.

6. CONCLUSION
This paper addresses the challenge of scarce data in rec-
ommendation systems. We introduce the novel scenario of
NO3-CDR framework and propose a unique approach to en-
hance recommendation systems by leveraging connections
across distinct yet conceptually similar datasets from mul-
tiple platforms based on user underlying preferences. Our
methodology focuses on bridging the gap between these plat-
forms, enabling mutual improvements in recommendation
quality while respecting user privacy. Empirical experiments
demonstrate the effectiveness of our approach in improving
recommendation quality, showcasing its potential to address
data scarcity challenges in fragmented cross-domain recom-
mendation systems.
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